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Abstract. Consistent couplings between an Abelian gauge field and three types of matter fields are in-
vestigated by means of the Hamiltonian BRST deformation theory based on cohomological techniques. In
this manner, scalar electrodynamics, the Stuckelberg theory for Abelian zero- and one-forms, respectively,
spinor electrodynamics, are inferred.

1 Introduction

The reformulation of the Lagrangian BRST symmetry [1–
5] on cohomological grounds allowed, among others, the
study of consistent interactions that can be introduced
among fields with gauge freedom without changing the
number of gauge symmetries [6–10] with the help of the de-
formation of the master equation [11] in the framework of
the local BRST cohomology [11–16]. This Lagrangian co-
homological deformation technique has been successfully
applied to many models of interest, like Chern–Simons
models, Yang–Mills theories, the Chapline–Manton
model, p-forms and chiral p-forms, Einstein’s gravity the-
ory, four- and eleven-dimensional supergravity, or BF
models [11,17–32].

On the other hand, the Hamiltonian BRST formalism
[5,33–37] appears to be the most natural setting for imple-
menting the BRST symmetry in quantum mechanics ([5],
Chapter 14). In the meantime, it attracted much atten-
tion by providing a strong tool for examining anomalies
[38], computing local BRST cohomologies [39], as well as
for establishing a proper connection with canonical quan-
tization formalisms, like, for instance, the reduced phase-
space or Dirac quantization procedures [40]. Lately, the
Hamiltonian BRST approach has been extended to the
investigation of consistent interactions that can be added
in gauge theories with the help of the deformation tech-
nique based on local cohomologies [41–44].

In this paper we investigate the consistent Hamiltonian
interactions that can be introduced between an Abelian
gauge field and three types of matter fields, namely, the
complex scalar, the massless real scalar and Dirac, with
the help of cohomological BRST arguments combined with
the deformation technique. In each of the three cases un-
der consideration we start from a “free” theory, whose
Lagrangian action is equal to the sum of the action of
an Abelian gauge field and the one describing one of the
matter fields. Every of the “free” systems displays two
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types of symmetries: a rigid one related to the matter
component, that induces a certain conserved current, and
the other purely gauge, characteristic to Maxwell’s theory.
The Hamiltonian BRST symmetry of the “free” models, s,
simply decomposes into s = δ+γ, with δ the Koszul–Tate
differential and γ the exterior derivative along the gauge
orbits. Its non-trivial action is essentially due to the first-
class constraints of the electromagnetic field. It has been
shown in [41–44] that the Hamiltonian problem of intro-
ducing consistent interactions in gauge theories can be re-
formulated as a deformation problem of the BRST charge
and BRST-invariant Hamiltonian of a starting “free” the-
ory. Following this line, we prove that the deformed BRST
charge consistent at all orders in the deformation param-
eter can be taking non-vanishing only at order one in the
case of all the investigated models. Meanwhile, the first-
order deformation of the BRST charge reduces every time
to the component of antighost number zero, which is γ-
invariant. Further, we solve the equations responsible for
the deformation of the BRST-invariant Hamiltonian asso-
ciated with the “free” systems. Related to the first-order
deformation equation written in a local form, we give evi-
dence for its relationship with the conserved currents cor-
responding to some rigid transformations of the matter
fields. On account of this relationship, we can determine
the deformed BRST charge and the first-order deforma-
tion of the BRST-invariant Hamiltonian. The remaining
higher-order equations are then satisfactorily solved, and
the deformed BRST-invariant Hamiltonian is completely
output in every of the cases under study. It is important
to notice that there appear no obstructions regarding the
locality of the deformed BRST quantities. Analyzing the
resulting interacting models, it follows that we have con-
structed nothing but scalar electrodynamics, the Stuckel-
berg theory for Abelian zero- and one-forms and spinor
electrodynamics. The matter fields are endowed, as a con-
sequence of their couplings to the Abelian gauge field, with
some gauge transformations that can be inferred from the
original global ones merely by gauging.
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This paper is organized in five sections. Section 2
briefly formulates the analysis of consistent Hamiltonian
interactions that can be added to a “free” theory with-
out changing its number of gauge symmetries as a defor-
mation problem of the corresponding BRST charge and
BRST-invariant Hamiltonian, finally expressed in terms of
the so-called main equations. Based on this, in Sect. 3 we
construct the consistent Hamiltonian couplings between
an Abelian gauge field and a scalar field on cohomologi-
cal grounds. As a consequence, we infer scalar electrody-
namics in the complex case, respectively, the Stuckelberg
model involving zero- and one-forms in the massless real
case. Section 4 deals with a similar topic with respect to
an Abelian gauge field and a Dirac field, leading to spinor
electrodynamics. Section 5 ends the paper with some con-
clusions.

2 Main equations of the Hamiltonian BRST
deformation procedure

We consider a “free” Lagrangian theory, whose action is
invariant under some gauge transformations, that can in
principle be reducible. At the Lagrangian level, all the in-
formation on the gauge structure and reducibility relations
is encoded within the solution to the master equation.
Moreover, it has been shown that the deformation of the
solution to the master equation generates consistent inter-
actions among fields with gauge freedom [5]. At the Hamil-
tonian level, the gauge structure of a given gauge theory
is completely captured by the BRST charge and BRST-
invariant Hamiltonian. Similarly to the Lagrangian defor-
mation procedure, we can reformulate the problem of in-
troducing consistent Hamiltonian interactions like a defor-
mation problem of the BRST charge and BRST-invariant
Hamiltonian.

If the interactions can be consistently constructed,
then the BRST charge of a given “free” theory, Ω0, can
be deformed as

Ω0 → Ω = Ω0 + g

∫
dD−1xω1 + g2

∫
dD−1xω2 +O(g3)

= Ω0 + gΩ1 + g2Ω2 +O(g3), (1)

where Ω should satisfy the equation

[Ω,Ω] = 0. (2)

Here, the symbol [, ] denotes either the Poisson, or the
Dirac bracket. If the initial system is purely first class,
we need the Poisson bracket; if there are also second-class
constraints, then we eliminate them, and work with the
Dirac one. Equation (2) splits accordingly with the defor-
mation parameter g as

[Ω0, Ω0] = 0, (3)

2[Ω0, Ω1] = 0, (4)

2[Ω0, Ω2] + [Ω1, Ω1] = 0, (5)

...

Obviously, (3) is automatically satisfied. From the remain-
ing equations we deduce the pieces (Ωk)k>0 on account of
the “free” BRST differential. With the deformed BRST
charge at hand, we then deform the BRST-invariant
Hamiltonian of the “free” theory, H0B, like

H0B → HB = H0B + g

∫
dD−1xh1

+ g2
∫

dD−1xh2 +O(g3)

= H0B + gH1 + g2H2 +O(g3), (6)

and require that

[HB, Ω] = 0. (7)

Equation (7) can be analyzed order by order in the defor-
mation parameter g, leading to

[H0B, Ω0] = 0, (8)

[H0B, Ω1] + [H1, Ω0] = 0, (9)

[H0B, Ω2] + [H1, Ω1] + [H2, Ω0] = 0, (10)

...

Clearly, (8) is again fulfilled, while from the others one
can determine the components (Hk)k>0 by relying on the
BRST symmetry of the “free” model. Equations (3)–(5),
etc., and (8)–(10), etc., represent the main equations of
our Hamiltonian deformation procedure. They will be
solved in the next sections with respect to the models
under study by means of some cohomological techniques,
specific to the Hamiltonian BRST formalism.

3 Couplings between an Abelian gauge field
and a scalar field

Initially, we investigate the consistent Hamiltonian cou-
plings between an Abelian gauge field and a scalar field
along the line exposed in the above, and derive the scalar
electrodynamics in the complex case, respectively, the
Stuckelberg coupling in the massless real case.

3.1 Couplings with a complex scalar field

We start from a “free” Lagrangian action written as the
sum between the action of an Abelian gauge field Aµ and
that of a complex scalar field (ϕ, ϕ̄)
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SL
0 [ϕ, ϕ̄, A

µ] (11)

=
∫

d4x

(
−1
4
FµνF

µν + (∂µϕ)∂µϕ̄− µ2ϕϕ̄− V (ϕϕ̄)
)
,

where the bar operation represents the complex conju-
gation, while the Abelian field strength is defined in the
usual manner by Fµν = ∂µAν − ∂νAµ.

As commonly known, the action (11) is invariant un-
der the one-parameter rigid symmetries (genuinely, only
the part corresponding to the scalar field is non-trivially
responsible for this global invariance)

∆ϕ = iϕξ, ∆ϕ̄ = −iϕ̄ξ, (12)

leading, via Noether’s theorem, to the conservation law

∂µj
µ = iϕ

δL(S)

δϕ
− iϕ̄

δL(S)

δϕ̄
, (13)

giving evidence for the conserved current

jµ = i(ϕ̄∂µϕ− ϕ∂µϕ̄), (14)

with

δL(S)

δϕ
= −

(
∂µ∂

µ + µ2 +
∂V

∂(ϕϕ̄)

)
ϕ̄, (15)

δL(S)

δϕ̄
= −

(
∂µ∂

µ + µ2 +
∂V

∂(ϕϕ̄)

)
ϕ, (16)

where L(S) stands for the Lagrangian density associated
with the complex scalar field.

By passing to the canonical analysis of action (11),
we find the Abelian first-class constraints and first-class
Hamiltonian of the form

G1 ≡ π0 ≈ 0, G2 ≡ −∂iπi ≈ 0, (17)

H0 =
∫

d3x
(1
2
πiπi +

1
4
FijF

ij −A0∂iπi

+ ππ̄ − (∂jϕ)∂jϕ̄+ µ2ϕϕ̄+ V (ϕϕ̄)
)
, (18)

where πµ, π and π̄ denote the canonical momenta of the
fields Aµ, ϕ, respectively, ϕ̄. The BRST charge of this
“free” theory is then

Ω0 =
∫

d3x(π0η
1 − (∂iπi)η2), (19)

where η1and η2 represent the fermionic Hamiltonian
ghosts. Their antighosts, to be denoted by P1, respec-
tively, P2, are also fermionic. The “free” Hamiltonian
BRST symmetry s• = [•, Ω0] simply decomposes as

s = δ + γ, (20)

with δ the Koszul–Tate differential, and γ the exterior lon-
gitudinal derivative along the gauge orbits. The Koszul–
Tate differential is graded according to the antighost num-
ber (antigh, antigh(δ) = −1), the degree of the exterior

longitudinal derivative is named the pure ghost number
(pgh, pgh(γ) = 1, pgh(δ) = 0, antigh(γ) = 0), while the
overall grading of the BRST differential is called the ghost
number (gh, gh(s) = 1), and is defined by the difference
between the pure ghost number and the antighost number.
The degrees of the generators from the BRST complex are
valued

antigh(Aµ) = antigh(πµ)
= antigh(ϕ) = antigh(ϕ̄) = 0, (21)

antigh(π) = antigh(π̄) = 0,
antigh(Pa) = 1, antigh(ηa) = 0, a = 1, 2, (22)

pgh(Aµ) = pgh(πµ) = pgh(ϕ)
= pgh(ϕ̄) = pgh(π) = pgh(π̄) = 0, (23)

pgh(Pa) = 0, pgh(ηa) = 1, a = 1, 2. (24)

The operators δ and γ act on the BRST generators
through the relations

δAµ = 0, δπµ = 0, δϕ = 0, δϕ̄ = 0, δπ = 0, (25)

δπ̄ = 0, δP1 = −π0, δP2 = ∂iπi, δη
1 = 0,

δη2 = 0, (26)

γA0 = η1, γAi = ∂iη2, γπµ = 0, γϕ = 0, γϕ̄ = 0,
γπ = 0, (27)
γπ̄ = 0, γP1 = 0, γP2 = 0, γη1 = 0, γη2 = 0, (28)

that will be used in the sequel at the deformation proce-
dure.

Next, we solve the equations (4)–(5), etc., and (9)–
(10), etc., that govern the Hamiltonian deformation. Tak-
ing into account the expression (2), the local form of (4)
holds if and only if ω1 is an s-co-cycle modulo the spatial
part of the space-time derivative, d̃ = dxi∂i, hence if and
only if

sω1 = ∂kσ
k, (29)

for some σk. In order to solve (29) we expand ω1 according
to the antighost number

ω1 =
(0)
ω 1 +

(1)
ω 1 + · · ·+ (J)

ω 1, (30)

where the last term can be assumed to be annihilated by
γ. As

antigh(
(J)
ω 1) = J and gh(

(J)
ω 1) = 1,

we find the result that

pgh(
(J)
ω 1) = J + 1,

so we can represent
(J)
ω 1 in the form

(J)
ω 1= µJ(η2)J+1.

(The ghost η1 does not come into discussion as it is trivial
in the cohomology of γ: γA0 = η1, γη1 = 0.) Due to the
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fermionic character of η2, this term is non-vanishing if and
only if J = 0, such that

ω1 =
(0)
ω 1= µ0η

2. (31)

With this choice, it is easy to check that the γ-invariant
coefficient µ0 should satisfy the conditions antigh(µ0) =
0, pgh(µ0) = 0, γµ0 = 0. From (25)–(28) the result is
obtained that µ0 can depend on (ϕ, ϕ̄) and (π, π̄), so µ0 =
µ0(ϕ, ϕ̄, π, π̄). In this way, the first-order deformation of
the BRST charge, determined up to µ0, is given by

Ω1 =
∫

d3xµ0(ϕ, ϕ̄, π, π̄)η2. (32)

By direct computation we then obtain that [Ω1, Ω1] = 0,
no matter what µ0(ϕ, ϕ̄, π, π̄) we take. The second-order
deformation equation of the BRST charge, (5), is thus
satisfied for Ω2 = 0, such that the corresponding higher-
order deformations can be taken as Ω3 = Ω4 = · · · = 0.
Consequently, the overall deformed BRST charge takes
the form

Ω =
∫

d3x(π0η
1 − (∂iπi − gµ0(ϕ, ϕ̄, π, π̄))η2). (33)

At this point, we investigate the deformation of the
BRST-invariant Hamiltonian, described by (9), (10), etc.,
where the BRST-invariant Hamiltonian of the free theory
reads

H0B = H0 +
∫

d3x η1P2. (34)

From (18), (32) and (34) we see that the first term in (9)
can be written as

[H0B, Ω1] =
∫

d3x
(−(πū+ π̄u)η2 − η1µ0

+
((

∂j∂
jϕ+ µ2ϕ+

∂V

∂(ϕϕ̄)
ϕ

)
v̄

+
(
∂j∂

jϕ̄+ µ2ϕ̄+
∂V

∂(ϕϕ̄)
ϕ̄

)
v

)
η2
)

=
∫

d3xλ, (35)

so that the local form of (9) leads to

sh1 + λ = ∂ini, (36)

for some ni. In the above we used the notations ū(x) =∫
d3y(δµ0(x0,y)/δϕ̄(x)), u(x) =

∫
d3y(δµ0(x0,y)/δϕ

(x)), v̄(x) =
∫
d3y(δµ0(x0,y)/δπ̄(x)), v(x) =

∫
d3y(δµ0

(x0,y)/δπ(x)). As the term −η1µ0 from λ does not con-
tain spatial derivatives, it should be compensated by a
similar term of opposite sign in sh1. This can be achieved
if and only if

h1 = µ0A
0 + α, (37)

where α should depend on Ai in order to produce a term
containing spatial derivatives through its Poisson bracket

with the second term in (19). In the meantime, α involves
no ghosts or antighosts because otherwise we would en-
large [H1, Ω0] with pieces that are not present in [H0B, Ω1].
These considerations further give

[H1, Ω0] =
∫

d3x(η1µ0 + ai∂
iη2), (38)

which combined with (35), lead to the concrete form of
(36) as((

∂j∂
jϕ+ µ2ϕ+

∂V

∂(ϕϕ̄)
ϕ

)
v̄

+
(
∂j∂

jϕ̄+ µ2ϕ̄+
∂V

∂(ϕϕ̄)
ϕ̄

)
v − πū− π̄u

)
η2

+ai∂
iη2 = ∂ini, (39)

where ai(x) =
∫
d3y(δα(x0,y)/δAi(x)). In order to obtain

a total derivative in the left-hand side of (39) we must have(
∂j∂

jϕ+ µ2ϕ+
∂V

∂(ϕϕ̄)
ϕ

)
v̄+
(
∂j∂

jϕ̄+ µ2ϕ̄+
∂V

∂(ϕϕ̄)
ϕ̄

)
×v − πū− π̄u = ∂iai. (40)

By adding the terms (∂0∂
0ϕ)v̄ and (∂0∂

0ϕ̄)v to both sides
of the above equation, we arrive at

−δL(S)

δϕ
v − δL(S)

δϕ̄
v̄

= πū+ π̄u+ (∂0∂
0ϕ)v̄ + (∂0∂

0ϕ̄)v + ∂iai. (41)

The left-hand side of (41) represents nothing but the vari-
ation of the Lagrangian density of the complex scalar field
under the rigid transformations

∆ϕ(x) = −
∫

d3y
δµ0(x0,y)
δπ(x)

ξ,

∆ϕ̄(x) = −
∫

d3y
δµ0(x0,y)
δπ̄(x)

ξ. (42)

On the other hand, by identifying the above global vari-
ations with the rigid one-parameter transformations (12),
we get the equations∫

d3y
δµ0(x0,y)
δπ(x)

= −iϕ(x),∫
d3y

δµ0(x0,y)
δπ̄(x)

= iϕ̄(x), (43)

whose solution outputs the unknown function µ0 of the
type

µ0(y) = i(ϕ̄π̄ − ϕπ)(y). (44)

Inserting (44) in (41), and taking into account (13), we
find that

∫
d3y(δα(x0,y)/δAi(x)) = i(ϕ̄∂iϕ − ϕ∂iϕ̄)(x),

which yields

α(y) = (i(ϕ̄∂iϕ− ϕ∂iϕ̄)Ai)(y). (45)
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In this manner, we have completely determined the first-
order deformation of the BRST-invariant Hamiltonian and
BRST charge:

H1 = i
∫

d3x((ϕ̄π̄ − ϕπ)A0 + (ϕ̄∂iϕ− ϕ∂iϕ̄)Ai), (46)

Ω1 = i
∫

d3x(ϕ̄π̄ − ϕπ)η2. (47)

Next, we approach the equation responsible for the
second-order deformation of the BRST-invariant Hamil-
tonian, (10). In view of this, we remark that the first term
is vanishing as Ω2 = 0, while the second one is equal to

[H1, Ω1] = −2
∫

d3x(∂i(ϕϕ̄Ai))η2 =
∫

d3x ρ. (48)

Consequently, (10) written in a local form becomes

sh2 + ρ = ∂ik
i, (49)

whose solution reads

h2 = −ϕϕ̄AiAi, (50)

so that

sh2 + ρ = ∂i(−2ϕϕ̄Aiη2). (51)

Passing now to the third-order equation, [H0B, Ω3] + [H1,
Ω2]+[H2, Ω1]+[H3, Ω0] = 0, we remark that the first two
terms vanish as Ω2 = Ω3 = 0, while by direct computation
we obtain

[H2, Ω1] = 0. (52)

Thus, we can safely take the third-order deformation piece
in the BRST-invariant Hamiltonian to be equal to zero,
H3 = 0, and, moreover, it turns out that all higher-order
deformation equations are fulfilled for

H4 = H5 = · · · = 0. (53)

Synthesizing the results deduced so far, we find that
the complete deformations of the BRST charge and BRST-
invariant Hamiltonian associated with the “free” system
under discussion are

Ω =
∫

d3x(π0η
1 − (∂iπi − ig(ϕ̄π̄ − ϕπ))η2), (54)

respectively,

HB =
∫

d3x

(
1
2
πiπi +

1
4
FijF

ij −A0∂iπi + ππ̄

− (∂jϕ)(∂jϕ̄) + µ2ϕϕ̄+ V (ϕϕ̄) + ig(ϕ̄π̄ − ϕπ)A0

+ ig(ϕ̄∂iϕ− ϕ∂iϕ̄)Ai − g2ϕϕ̄AiAi + η1P2

)
. (55)

Now, we are in the position to analyze the resulting de-
formed theory. From the pieces present in Ω that are linear

in the ghosts we observe that the resulting model displays
at the Hamiltonian level the same primary first-class con-
straint like the initial system (the former constraint in
(17)), but the secondary one as a result of the deforma-
tion process has turned into

γ2 ≡ −∂iπi + ig(ϕ̄π̄ − ϕπ) ≈ 0, (56)

such that these first-class constraints are still Abelian. Ex-
amining the terms that contain neither ghosts nor
antighosts in (55), we notice that the first-class Hamil-
tonian of the interacting theory reads

H =
∫

d3x

(
1
2
πiπi +

1
4
FijF

ij

− A0(∂iπi − ig(ϕ̄π̄ − ϕπ))

+ ππ̄ − (Djϕ)(Djϕ) + µ2ϕϕ̄+ V (ϕϕ̄)
)
, (57)

where the spatial part of the covariant derivative is defined
through

Di = ∂i + igAi. (58)

The Lagrangian setting of the deformed system can be
derived by successively passing to the extended and total
formalisms, which finally yields the Lagrangian action

SL[ϕ, ϕ̄, Aµ] =
∫

d4x

(
− 1

4
FµνF

µν (59)

+ (Dµϕ)(Dµϕ) − µ2ϕϕ̄− V (ϕϕ̄)

)
,

subject to the gauge transformations

δεA
µ = ∂µε, δεϕ = igϕε, δεϕ̄ = −igϕ̄ε, (60)

with the covariant derivative given by

Dµ = ∂µ + igAµ. (61)

We remark that the complex scalar field, that initially pos-
sessed only the rigid invariances (12), becomes endowed
now with the gauge invariances in (60), that can be di-
rectly obtained from the rigid ones merely by gauging,
and, moreover, have a typical form of gauge invariances
for matter fields. It appears to be clear that the resulting
interacting theory describes, at both the Hamiltonian and
the Lagrangian level, nothing but the coupling between
an Abelian gauge field and a complex scalar field, which
is known as scalar electrodynamics.

3.2 Couplings with a massless real scalar field

In the sequel we apply the Hamiltonian deformation
scheme to a free theory involving a massless real scalar
field ϕ and an Abelian gauge field Aµ, and arrive precisely
at a model underlying the Stuckelberg coupling between
them. The Lagrangian action of this free system is
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S′L
0 [ϕ,Aµ] =

∫
d4x

(
−1
4
FµνF

µν +
1
2
(∂µϕ)(∂µϕ)

)
,

(62)

and possesses the global shift symmetry

∆ϕ = ξ, (63)

due essentially to the presence of the real scalar field,
which leads to the conservation law

∂µj
µ =

δL(SR)

δϕ
, (64)

which reveals the conserved current

jµ = −∂µϕ, (65)

where

δL(SR)

δϕ
= −∂µ∂

µϕ, (66)

and L(SR) denotes the Lagrangian density of the real scalar
field. From the canonical analysis of this theory we get
the Abelian first-class constraints (17) and the first-class
Hamiltonian

H ′
0 =

∫
d3x

(
1
2
πiπi +

1
4
FijF

ij

− A0∂iπi +
1
2
π2 − 1

2
(∂iϕ)(∂iϕ)

)
, (67)

where π is the momentum conjugated to ϕ. The BRST
analysis is exactly the same like that performed for the
previous model, and relies on the formulas (19)–(28), from
which any reference to the pair (ϕ̄, π̄) should be discarded.
At this point, we have all the elements required for the
development of the Hamiltonian deformation scheme.

The consistent deformations of the free BRST charge
(19) demand, as we have seen, finding the non-trivial solu-
tions to (4), (5), etc. The first-order deformation equation
takes the local form (29). Reasoning like above, we de-
velop ω1 according to the antighost number (see (30)),
and conclude that it reduces to the first component

ω1 =
(0)
ω 1= µ′

0(ϕ, π)η
2, (68)

where the function µ′
0(ϕ, π) is unknown and γ-invariant,

such that the deformed BRST charge takes the form (35),
with µ′

0(ϕ, π) instead of µ0(ϕ, ϕ̄, π, π̄).
Investigating in the sequel the deformation of the

BRST-invariant Hamiltonian (34) (with H0 replaced by
H ′

0) at the first-order level, described by (9), it follows,
with the help of the relation (68), that

[H0B, Ω1] =
∫

d3x((−πu′ + (∂j∂
jϕ)v′)η2 − η1µ′

0)

=
∫

d3xλ′, (69)

where u′(x) =
∫
d3y(δµ′

0(x
0,y)/δϕ(x)) and v′(x) =∫

d3y(δµ′
0(x

0,y)/δπ(x)), hence the local form of (9) can
be written as

sh1 + λ′ = ∂in′
i. (70)

Now, we take h1 as

h1 = µ′
0A

0 + α′, (71)

in order to discard the term η1µ′
0 from the left-hand side

of (9), where α′ has both the antighost and pure ghost
numbers equal to zero and depends in a non-trivial way of
Ai for the same reason as before. After some computation,
we deduce that

[H1, Ω0] =
∫

d3x(η1µ′
0 + a′

i∂
iη2), (72)

with a′
i(x) =

∫
d3y(δα′(x0,y)/δAi(x)). Therefore, (70)

becomes

(−πu′ + (∂j∂
jϕ)v′)η2 + a′

i∂
iη2 = ∂in′

i, (73)

and it is satisfied if we impose

−πu′ + (∂j∂
jϕ)v′ = ∂ia′

i. (74)

If we add the term (∂0∂
0ϕ)v′ to both sides of the last

equation, we find the relation

δL(SR)

δϕ
v′ = −(πu′ + (∂0∂

0ϕ)v′ + ∂ia′
i), (75)

whose left-hand side signifies the variation of the
Lagrangian density of the real scalar field under the one-
parameter rigid transformations

∆ϕ(x) =
∫

d3y
δµ′

0(x
0,y)

δπ(x)
ξ. (76)

Then by identifying (76) with the global shift invariance
(63), characteristic for the real scalar field, we are led to
the equation ∫

d3y
δµ′

0(x
0,y)

δπ(x)
= 1, (77)

possessing the solution

µ′
0(y) = π(y), (78)

that substituted in (75) reveals the equation
∫
d3y(δα′

(x0,y)/δAi(x)) = ∂iϕ(x), clearly leading to

α′(y) = Ai∂iϕ(y). (79)

So far, we have generated the first-order deformation of
the BRST-invariant Hamiltonian and BRST charge re-
lated to the free model under consideration:
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H1 =
∫

d3x(πA0 +Ai∂iϕ), (80)

Ω1 =
∫

d3xπη2. (81)

Further, we remark that the first term in the second-order
deformation equation of the BRST-invariant Hamiltonian,
(10), is equal to zero due to Ω2 = 0; the second piece is
found to be

[H1, Ω1] = −
∫

d3x(∂iA
i)η2 =

∫
d3x ρ′, (82)

hence (10) is equivalent to sh2 + ρ′ = ∂ik
′i, and allows us

to write

h2 = −1
2
AiAi, (83)

so that

sh2 + ρ′ = ∂i(−Aiη2). (84)

Then it is easy to check that [H2, Ω1] = 0, which produces
H3 = 0, and consequently H4 = H5 = · · · = 0.

According to the results obtained until now, we can
state that the deformed BRST charge and BRST-invariant
Hamiltonian corresponding to the model that describes
an Abelian gauge field coupled with a real scalar field,
consistent to all orders in the deformation parameter, take
the form

Ω =
∫

d3x(π0η
1 − (∂iπi − gπ)η2), (85)

respectively,

HB =
∫

d3x

(
1
2
πiπi +

1
4
FijF

ij

− A0∂iπi +
1
2
π2 − 1

2
(∂iϕ)(∂iϕ)

+ gπA0 + gAi∂iϕ− 1
2
g2AiAi + η1P2

)
. (86)

On account of these expressions, we deduce that the de-
formation modifies only the secondary constraint like

γ′
2 ≡ −∂iπi + gπ ≈ 0, (87)

while the primary one (see the former relation in (17))
is unchanged. In addition, our procedure preserves the
Abelianity of the new constraints. The associated
deformed first-class Hamiltonian is

H ′ =
∫

d3x

(
1
2
πiπi +

1
4
FijF

ij −A0(∂iπi − gπ)

+
1
2
π2 − 1

2
(∂iϕ− gAi)(∂iϕ− gAi)

)
. (88)

By passing to the Lagrangian version of the resulting cou-
pled theory, we find the action

S′L[ϕ, ϕ̄, Aµ] =
∫

d4x

(
−1
4
FµνF

µν (89)

+
1
2
(∂µϕ− gAµ)(∂µϕ− gAµ)

)
,

invariant under the gauge transformations

δεA
µ = ∂µε, δεϕ = gε. (90)

Thus, the gauge symmetry of the real scalar field in the
framework of the deformed system can again be deduced
by performing the gauging of the corresponding global
shift symmetry (63), present at the level of the starting
free model. Analyzing the coupling between the real scalar
field and the Abelian gauge field emphasized by our de-
formation procedure, we conclude that it is precisely a
Stuckelberg-like coupling between a zero- and a one-form.

4 Couplings between an Abelian gauge field
and a Dirac field

Here, we derive the consistent Hamiltonian interactions
between an Abelian gauge field and a Dirac field, (ψα, ψ̄α).
The starting point is a free Lagrangian action that is equal
to the sum of the actions of an Abelian gauge field and a
Dirac field

S̃L
0 [ψ

α, ψ̄α, A
µ] (91)

=
∫

d4x

(
−1
4
FµνF

µν + ψ̄α(i(γµ)αβ∂µ −mδα
β)ψ

β

)
,

where the spinor fields are fermionic, and γµ is the stan-
dard notation for Dirac’s gamma matrices. The bar op-
eration now signifies Dirac conjugation. The action (91)
is known to be invariant under the (bosonic) rigid one-
parameter symmetry

∆ψα = iψαξ, ∆ψ̄α = −iψ̄αξ, (92)

involving only the spinors, that gives, according to
Noether’s theorem, the conservation law

∂µj
µ = i

δRL(D)

δψα
ψα − i

δRL(D)

δψ̄α
ψ̄α, (93)

which emphasizes the conserved current

jµ = ψ̄α(γµ)αβψ
β , (94)

where

δRL(D)

δψα
= −(i(γµ)βα∂µ +mδβ

α)ψ̄β , (95)

δRL(D)

δψ̄α
= −(i(γµ)αβ∂µ −mδα

β)ψ
β , (96)

and L(D) obviously denotes the Dirac Lagrangian. The
upper index R (L) signifies the right (left) derivative.
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From the canonical analysis of this model we extract
the constraints and the canonical Hamiltonian

G1 ≡ π0 ≈ 0, G2 ≡ −∂iπi ≈ 0, (97)

χα ≡ Πα − i
2
(γ0)βαψ̄β ≈ 0,

χ̄α ≡ Π̄α − i
2
(γ0)αβψ

β ≈ 0, (98)

H̃0 =
∫

d3x

(
1
2
πiπi +

1
4
FijF

ij −A0∂iπi

− ψ̄α(i(γi)αβ∂i −mδα
β)ψ

β

)
. (99)

In (98) and (99), Π̄α and Πα denote the canonical mo-
menta respectively conjugated to the fields ψ̄α and ψα.
The constraints (97) are first class and Abelian, while
those of (98) are second class. Eliminating the second-class
constraints by means of the Dirac bracket [, ] constructed
with respect to themselves, we find that the spinors ψα

and ψ̄α become conjugated

[ψα, ψ̄β ] = i(γ0)αβ , (100)

the resulting theory evolving on a reduced phase space
described by the fields/momenta (Aµ, πµ), (ψα, ψ̄α) and
displaying only the Abelian first-class constraints (97),
together with the first-class Hamiltonian (99). Related to
the Hamiltonian BRST symmetry associated with this free
theory, we mention that our discussion from Sect. 3.1 re-
mains valid in the Abelian gauge field sector, with the
exception of the bracket, which should be interpreted as
Dirac instead of Poisson. Thus, all formulas (19)–(28) con-
nected with this sector will be used in the sequel, while
the ones describing the complex scalar component should
be removed and replaced by

antigh(ψα) = antigh(ψ̄α) = 0, pgh(ψα) = pgh(ψ̄α) = 0,
(101)

δψα = 0, δψ̄α = 0, γψα = 0, γψ̄α = 0. (102)

With these observations at hand, we next proceed to an-
alyzing the Hamiltonian deformation procedure.

The analysis of (4), (5), etc., correlated with the de-
formation of the BRST charge (19) goes along exactly the
same line as employed for the complex or real scalar field,
and allows us to write down the deformed solution in the
form

Ω =
∫

d3x(π0η
1 − (∂iπi − gµ̃0(ψα, ψ̄α))η2), (103)

where the (so far) unknown bosonic function µ̃0(ψα, ψ̄α)
depends only on the spinor fields, is bosonic, and satisfies
the properties antigh(µ̃0) = 0, pgh(µ̃0) = 0 and γµ̃0 = 0.
Thus, the only non-vanishing piece in the deformed BRST
charge is the one corresponding to the first order in the
deformation parameter,

Ω1 =
∫

d3x µ̃0(ψα, ψ̄α)η2. (104)

The unknown function will be found during the identifi-
cation of the deformed BRST-invariant Hamiltonian, gov-
erned by (9), (10), etc.

As the BRST-invariant Hamiltonian of the free system
under study is (34), with H0 substituted with H̃0, from
(104) it follows that

[H0B, Ω1] = −
∫

d3x(i(i(γj)βα∂jψ̄β +mψ̄α)(γ0)αρw̄
ρη2

+i(i(γj)βα∂jψ
α −mψβ)(γ0)ρβwρη

2 + η1µ̃0)

=
∫

d3x λ̃, (105)

hence (9) reduces in the local form to

sh1 + λ̃ = ∂iñi, (106)

for some ñi. In (105) we performed the notations w̄ρ(x) =∫
d3y(δLµ̃0(x0,y)/δψ̄ρ(x)) and wρ(x) =

∫
d3y(δLµ̃0(x0,

y)/δψρ(x)). In order to remove the term linear in η1 from
the left-hand side of (106), we act like in the case of the
complex or real scalar field, namely, we demand that

h1 = µ̃0A
0 + α̃, (107)

where the bosonic function α̃ is unknown, and can de-
pend only on ψα, ψ̄α and Ai. The dependence on Ai is
required for ensuring the appearance of spatial derivatives
via the Dirac bracket betweenH1 and Ω0, and, meanwhile,
α̃ should involve no ghosts or antighosts in order to pre-
vent the existence of terms in [H1, Ω0] different from those
in [H0B, Ω1], which can be attained via a dependence also
on ψα and ψ̄α. Accordingly, we find

[H1, Ω0] =
∫

d3x(η1µ̃0 + ãi∂
iη2), (108)

where ãi(x) =
∫
d3y(δα̃(x0,y)/δAi(x)). From (105) and

(108), we see that (106) becomes

−i((i(γj)βα∂jψ̄β +mψ̄α)(γ0)αρw̄
ρ

+(i(γj)βα∂jψ
α −mψβ)(γ0)ρβwρ)η2 + ãi∂

iη2

= ∂iñi. (109)

The left-hand side of (109) reduces to a total derivative if

−i((i(γj)βα∂jψ̄β +mψ̄α)(γ0)αρw̄
ρ

+(i(γj)βα∂jψ
α −mψβ)(γ0)ρβwρ)

= ∂iãi. (110)

Adding to both sides of (110) the term −(i(γ0)βα∂0ψ̄β)
i(γ0)αρw̄

ρ, as well as the quantity −i((γ0)βα∂0ψ
α)

i(γ0)ρβwρ, we deduce

δRL(D)

δψα
i(γ0)αρw̄

ρ +
δRL(D)

δψ̄α
i(γ0)ραwρ

= (∂0ψ̄α)w̄α + (∂0ψ
α)wα + ∂iãi. (111)
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Analyzing the structure of the last formula and replacing
w̄ρ, wρ in terms of µ̃0, it turns out that its left-hand side
gives the variation of the Dirac Lagrangian under the rigid
one-parameter transformations

∆ψα(x) = i(γ0)αρ

∫
d3y

δLµ̃0(x0,y)
δψ̄ρ(x)

ξ, (112)

∆ψ̄α(x) = i(γ0)ρα

∫
d3y

δLµ̃0(x0,y)
δψρ(x)

ξ. (113)

Identifying (112) and (113) with the well-known global
one-parameter invariance (92) of Dirac theory, we are led
to the equations

(γ0)αρ

∫
d3y

δLµ̃0(x0,y)
δψ̄ρ(x)

= ψα(x), (114)

(γ0)ρα

∫
d3y

δLµ̃0(x0,y)
δψρ(x)

= −ψ̄α(x), (115)

that yield the solution

µ̃0(y) = ψ̄α(y)(γ0)αβψ
β(y). (116)

Substituting (116) in (111) and using (93), we are provided
with the equations

∫
d3y(δα̃(x0,y)/δAi(x)) = ψ̄α(x)

(γi)αβψ
β(x), which produce

α̃(y) = ψ̄α(y)(γi)αβψ
β(y)Ai(y). (117)

Consequently, we have generated the first-order deformed
BRST-invariant Hamiltonian:

H1 =
∫

d3x(ψ̄α(γ0)αβψ
βA0 + ψ̄α(γi)αβψ

βAi). (118)

Further, let us study the higher-order deformations. By
direct computation we get [H1, Ω1] = 0, which combined
with Ω2 = 0 allows us to take the solution of (10) to be
H2 = 0. Then, it is simple to check that we can choose

H3 = H4 = · · · = 0. (119)

In conclusion, the complete deformed BRST charge
and BRST-invariant Hamiltonian that govern the cou-
plings between an Abelian gauge field and a Dirac field
are given by

Ω =
∫

d3x(π0η
1 − (∂iπi − gψ̄α(γ0)αβψ

β)η2), (120)

respectively,

HB =
∫

d3x

(
1
2
πiπi +

1
4
FijF

ij −A0∂iπi − ψ̄α(i(γi)αβ∂i

−mδα
β)ψ

β + gψ̄α(γµ)αβψ
βAµ + η1P2

)
. (121)

Like in the case of the scalar field theory, from the above
quantities we read off that the classical Hamiltonian inter-
acting theory is subject to the deformed Abelian first-class
constraints

γ̃2 ≡ −∂iπi + gψ̄α(γ0)αβψ
β ≈ 0, (122)

and the former constraint in (97), as well as that the first-
class Hamiltonian with respect to these constraints has
the expression

H̃ =
∫
d3x

(
1
2
πiπi +

1
4
FijF

ij −A0(∂iπi − gψ̄α(γ0)αβψ
β)

− ψ̄α(i(γi)αβ∂i −mδα
β)ψ

β + gψ̄α(γµ)αβψ
βAµ

)
, (123)

where the first-class behavior is considered in terms of
the Dirac bracket (100). If we take the necessary steps to
the Lagrangian framework, we discover that the resulting
interacting theory displays the Lagrangian action

S̃L[ψα, ψ̄α, A
µ] (124)

=
∫

d4x

(
−1
4
FµνF

µν + ψ̄α(i(γµ)αβDµ −mδα
β)ψ

β

)
,

invariant under the gauge transformations

δεA
µ = ∂µε, δεψ

α = igψαε, δεψ̄α = −igψ̄αε, (125)

where the covariant derivative Dµ takes the form (61). We
observe that, exactly like for the complex or real scalar
field, the spinors bear now some gauge invariances, re-
sulting from the original rigid ones in a direct manner
by gauging. An interesting difference between this model
and the scalar theory is that while there we have obtained
non-trivial pieces for the BRST-invariant Hamiltonian at
order two in the deformation parameter, the similar quan-
tity stops here at order one. This feature is essentially due
to the statistics of the present matter fields, which are
spinors, hence fermionic. Thus, we can conclude that as
a result of our deformation scheme we obtained the well-
known model describing the coupling between the electro-
magnetic and spinor fields, namely spinor electrodynam-
ics.

5 Conclusion

In conclusion, in this paper we have derived the consis-
tent Hamiltonian interactions between an Abelian gauge
field and the complex scalar field, the massless real scalar
field, respectively, Dirac field. Our approach is based on
the deformation of the BRST charge and BRST-invariant
Hamiltonian associated with the uncoupled theories in-
volving these fields. The derivation of the solutions to
the main equations that govern our BRST deformation
procedure essentially relies on the presence of some con-
served currents corresponding to the rigid symmetries of
the matter fields from the “free” models. The first-order
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deformations of both BRST charge and BRST-invariant
Hamiltonian can be written in the form Ω1 = ± ∫ d3xqη2,
respectively, H1 = ± ∫ d3x(qA0 + jiA

i), in the case of all
analyzed models, where q is the Hamiltonian charge den-
sity of the associated conserved currents. For the scalar
case we see that [H1, Ω1] is non-vanishing due to the fact
that [ji, q] is not zero, which requires non-trivial second-
order deformations of the BRST-invariant Hamiltonian. In
the case of the Dirac theory we have [H1, Ω1] = 0, so the
second-order deformations of H0B can be taken to vanish.
It is interesting to note that, apart from other situations
[41–44], where the deformation of the BRST charge can
be computed in a self-consistent manner, here we need to
alternate it with the deformation of the BRST-invariant
Hamiltonian in order to reach some complete solutions. As
a result of our method we discover scalar electrodynamics,
a Stuckelberg-like coupling, respectively, spinor electrody-
namics. All the couplings are local, and the matter fields
bear some gauge invariances that can be produced via the
gauging of the original global symmetries. As expected,
the U(1) gauge invariance of Maxwell’s field is kept un-
changed for all models during the deformation process.
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